D 23135	LEGE LIBRA	Name
	G SETIONAL TRUST	Reg. No

EMESTER B TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2011

1-INFORMATION THEORY AND CODING

Time: Three Hours

Part A

Answer all questions.

- 1. (a) Explain the terms self information, entropy, mutual information and channel capacity.
 - (b) Explain about a binary symmetric channel.
 - (c) Discuss on generator matrix and parity check matrix of a linear block code.
 - (d) Explain the constraints to be satisfied by a polynomial to be generator polynomial of a cyclic code.
 - (e) Explain binary field arithmetic with suitable example.
 - (f) Explain the properties of Galois field.
 - (g) Design a convolutional coder of constant length 8 and rate efficiency ½. Draw its tree diagram.
 - (h) Explain about interleaved convolution codes.

 $(8 \times 5 = 40 \text{ marks})$

Maximum: 100 Marks

Part B

2. (A) Explain Shannon Fano code and Lempel-Ziv coding assuming approximate source.

Or

- (B) State and prove source coding theorem.
- 3. (A) Assuming a (7, 4) cyclic coder with a generator polynomial $1 + x + x^3$, find the systematic and non-systematic code words corresponding to message word 1101. Detect the error in the received word 0000001.

Or

- (B) (i) Discuss the error detector and corrector capabilities of linear block code.
 - (ii) Explain a linear block decoder which can detect and correct the error.
- 4. (A) Explain in detail BCH codes.

Or

- (B) Explain in detail Reed Solomon codes.
- 5. (A) Explain Viterbi algorithm to decode convolutionally coded words.

Or

(B) Explain sequential decoding of convolutional coded words.

 $(4 \times 15 = 60 \text{ marks})$