FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE OF STREET OCTOBER 2011

EC/PTEC 09 503—ELECTROMAGNETIC FIELD THEO

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

- 1. State Divergence theorem.
- 2. What is magnetic dipole moment?
- 3. What is conduction current?
- 4. What are the conditions for a wave to be circularly polarized?
- 5. What is meant by dominant mode of wave propagation?

 $(5 \times 2 = 10 \text{ marks})$

Part B

- 1. Find the divergence of $\vec{A} = r\vec{a}_i + r\cos^2\theta \vec{a}_{\phi}$.
- 2. Derive the boundary conditions at the interface separating dielectric and conductor in an electric field.
- 3. Derive the Maxwell's equation from Faraday's law.
- 4. Write in brief about plane waves in lossless dielectrics.
- 5. Explain in brief phase velocity and group velocity.
- 6. What are cavity resonators? Write in brief.

 $(4 \times 5 = 20 \text{ marks})$

Part C

1. Prove Divergence theorem for vector field $\vec{A} = 2xy \vec{a}_x + (x^2 + z^2) \vec{a}_y + 2yz \vec{a}_z$.

0r

- 2. Derive the magnetic Boundary conditions.
- 3. A uniform plane wave in free space has Electric field given by $E_s = 10e^{-j\beta x}\vec{a}_z + 15e^{-j\beta x}\vec{a}_y$ V/m . Describe the wave polarization, Find H_s and determine the average power density.

Or

- 4. Derive the expression for capacitance of a parallel plate capacitor using Laplace equation.
- 5. Explain the reflection of plane wave at oblique incidence due to perpendicular polarization.

Or

- 6. Explain the refraction of plane waves by dielectric.
- 7. Explain how stub matching is performed for impedance matching with one example.

Or

8. Explain the TE mode propagation and derive the field components for a Rectangular waveguide.

 $(4 \times 10 = 40 \text{ marks})$