THIRD SEMESTER B.TECH. (ENGINEERING) EXAMINATION, OCTOBER 2011

CS/IT 09 306/PTCS 09 305—SWITCHING THEORY AND LO

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Convert $(342.45)_{10}$ to binary and Octal.
- 2. What is prime implicant?
- 3. What is the difference between decoder and demultiplexer?
- 4. What are the terms that determines the size of a PLA?
- 5. What is meant by race around condition?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Write short note on weighted code.
- 7. Explain how can AND-OR circuit can be converted to NAND and NOR logic.
- 8. Explain 1 of 8 demultiplexer with neat logic diagram.
- 9. Explain briefly different types of ROMs.
- 10. Determine the Boolean difference for the following functions:—

$$Y_1 = AB + AC + BC$$

$$Y_2 = (A + B) (A + C) (B + C).$$

11. Draw the logic diagram of a 3 bit binary ripple counter using toggle flip-flops.

 $(4 \times 5 = 20 \text{ marks})$

Part C

- 12. (a) (i) Use Karnaugh map to simplify the function F = AB + A(B + C) + B(B + C). (5 marks)
 - (ii) Implement he function $Y = AB + \overline{AB} + \overline{BC}$ with OR and inverter gates. (5 marks)

Or

(b) Simplify the following Boolean function by using Quine McCluskey mehtod:

 $F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 7, 8, 10, 12, 13).$

2

13. (a) Design a logic circuit to convert excess-3 code to BCD code.

Or

(b) (i) Design a full adder usign only NOR gates.

(5 marks)

(ii) Draw the logic diagram of decimal to BCD encoder and explain its working.

14. (a) Derive a test set that can detect all single faults in the 2 to 4 decoder with enable input.

01

(b) Explain folding of PLA with examples.

15. (a) (i) Draw the logic diagram of JK flip-flop and explain its function with truth table.

(5 marks)

(ii) Explain the working of serial-in-parallel out shift register with logic diagram. (5 marks)

Or

(b) Design a sequential logic circuit with two D-flip-flops, A and B and one input x, when x = 0, the state of the circuit remains the same. When x = 1, the circuit passes through the state transitions from 00 to 01 to 11 to 10 and back to 00 and repeats.

Implement he function Y = AB + AB + BC with SR and inverter get

 $[4 \times 10 = 40 \text{ marks}]$