Name:

Reg.No.

FIFTH SEMESTER B.TECH (ENGINEERING) DEGREE EXAMINATION DECEMBER 2010

CS 04 504 - NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUE (2004 ADMISSION)

Time: Three hours

Answer ALL questions.

- 1. a) What are the steps involved in solving a polynomial equation using bisection method?
 - b) Find the value of y at x = 0.2 and at n = 0.4 for $\frac{dy}{dx} = x^2 + yy(0) = 1$ by Euler's method.
 - c) Explain the methods finding initial solution for solving transportation problem.
 - d) Explain the terms:
 - (i) Basic Solution
 - (ii) Feasible solution
 - (iii) Optimum solution
 - e) Solve the system of equations:

$$x+y+z = 13$$
$$3y+2z = 22$$
$$x - z = -2$$

- f) Explain routing problem with an example.
- g) Compute the derivative of $f(x) = x^3$ at x = 1 for h = 0.1 and h = 0.2
- h) Compare slack variable, surplus variable and artificial variable.

 $(8 \times 5 = 40)$

2. a) Solve the following linear programming problem by simplex method:

Maximize
$$Z = 5x_1 + x_2 + 4x_3$$

Subject to
$$x_{1}-2x_{2}+x_{3} \le 8$$

$$2x_{1}+x_{3} \le 10$$

$$4x_{1}-5x_{2}+x_{3} \le 20$$

$$x_{2},x_{2},x_{3} \le 0$$

OR

b) Solve the following linear programming problem by big M method or two phase method:

Minimize $Z = 8x_1 + 12x_2 + 2x_3$ Subject to $x_1 + x_2 + x_3 \le 8$ $2x_1 + x_2 + 4x_3 \le 16$

$$2x_1 + x_2 + 4x_3 \le 16$$

 $x_1, x_2, x_3 \le 0$

3. a) Evaluate the integral $\int_{0}^{1} e^{-x^{2}} dx$ using Simpson's $\frac{1}{3}$ rule taking step size h = 0.1

b) Compute the value of y at x = 0.1 and x = 0.2 using Runga-Kutta 4th order method given that $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1

OR

(c) Given the equation $\frac{dy}{dx} = \frac{x+y}{x^2+y^2}$, y(0)=1, find the value of y at x=0.1 and x=0.2 by

(i) Euler's method and (ii) Modified Euler's method.

d) Compute the value of y at X + . and x = 1.0 using Milne's-Predictor-Corrector formula given that

 $\frac{dy}{dx} = x^2 + 2y, y(0) = 1, y(0.2) = 1.4948, y(.4) = 2.2519, y(.6) = 3.4201.$

4. a) Find a root (correct to 4 decimal places) of the equation:

$$f(x) = x^4 + xe^{-x} - 10$$

Using Newton Raphson formula.

b) Solve the following system of linear equation by Gauss-Seidel iterative procedure:

$$10x + 3y + 2z = 41$$
$$5x + 10y - z = 70$$
$$3x + 4y + 10z = 81$$

OR

c) Find a lagrange interpolation polynomial to fit the following values of the table. Compute y(0.8).

d) Compute the value of *y* at *x*=16 using Newton's forward difference formula using the following table:

 x
 10
 20
 30
 40
 50

 y
 0.3472
 0.6840
 1.000
 1.2856
 1.5320

5. a) Solve the following linear programming problem by Simplex method:-

Maximize
$$Z = 13x_1 + 15x_2 + 12x_3$$

subject to $x_1 + 2x_2 + x_3 \le 25$
 $x_1 - x_2 \le 10$
 $x_2 + 2x_3 \le 20$
 $x_1, x_2, x_3 \le 0$.

OR

b) Solve the following linear programming problem by two phase method:-

Minimize
$$Z = 10x_1 + 15x_2 + 12x_3$$

subject to $x_1 + 2x_2 + x_3 \ge 10$
 $x_1 - x_2 + 3x_3 \ge 20$
 $x_1 + x_2 \ge 5$
 $x_1, x_2, x_3 \ge 0$

 $(15 \times 4 = 60)$
