86	Name:
approximate the second second	Reg. No
SEVENT	ESEMESTER B.TECH. DEGREE EXAMINATION,
10 SIONAL	DECEMBER 2011
10:15%	
0 0 0	A NO4.703 – Digital MOS Circuits

(2004 Admissions)

Time. Phree hours

Maximum: 100 marks

I. (a) Compare MOS and BJT families.

(b) Explain in detail about enchancement and depletion MOSFETs.

- (c) Design a resistive load inverter for V_{DD} =3.3 V, V_{OL} = 0.15 V, β_n ' = 60 μ V/V². Assume I_d =30 μ A at inverter switching threshold and the value of switching threshold of the inverter is 1.5 V.
- (d) What is a Super buffer? Explain with its schematic.
- (e) What is a transmission gate? Design a 4x1 Multiplexer using Transmission gates.
- (f) With schematic explain the operation of a BICMOS inverter.
- (g) Explain the features of NORA Logic and compare it with static CMOS.
- (h) What is an adiabatic logic? Explain.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Discuss in detail about the second order effect of MOS.

(or)

- (b) With neat sketch explain the structure of a MOSFET and its small signal and large signal parameters.
- III. (a) Derive an expression for the $V_{\text{OH}},\,V_{\text{IH}},\,V_{\text{IL}}$ and V_{OL} of a resistive load inverter

(or)

- (b) (i) Derive an expression for the power dissipation of a CMOS inverter.
 - (ii) Derive an expression for the propagation delay of a CMOS inverter.
- IV. (a) Draw the transistor level schematic of a CMOS NOR and NAND gates and explain their operation.

(or)

- (b) (i) Implement a F= AB and F=A+B using Pass transistor logic
 - (ii) Explain the Boot strapping and its advantages.
- V. (a) Discuss in detail about the two phases of operation of a Dynamic CMOS logic and its advantages and disadvantages over Static CMOS logic.

(or)

- (b) (i) What is charge sharing in Domino Logic? How it is avoided
 - (ii) Realize the following function using Domino Logic:

F= AB + CD

 $[4 \times 15 = 60 \text{ marks}]$