Name G. COLLEGE
Reg.No.3

FIFTH SEMESTER B. TECH DEGREE EXAMINATION, NOVEMBER

AI 09 502 - SIGNALS & SYSTEMS (2009 Admission)

Time: Three Hours

Maximum: 70 Marks

Part A (5x 2 Marks = 10 Marks) Answer All questions

- 1. State the difference between energy and power signals.
- 2. Find the area under the signal $x(t) = 10 \delta(t-2)$.
- 3. Find the Fourier Transform of x(t) = 1/t.
- 4. What is the significance of power spectral density?
- 5. State the initial value theorem.

Part B (4×5 Marks = 20 Marks)

Answer any four questions

- 6. Determine and sketch the even and odd components of the continuous –time signal $x(t) = e^{-t}u(t)$.
- 7. State and prove convolution theorem.
- 8. State and explain Drichlet's condition for the convergence of Fourier Series.
- 9. Determine the DTFT of $y_1(n)=x(2n)$ given that DTFT of $x[n]=X(e^{i\omega})$.
- 10. Find the Laplace transform of $x(t) = e^{-3t} \cos(2\pi 100t)u(t)$.
- 11. Find the unilateral Z-transform of n²u(n).

Part C (4x 10 Marks = 40 Marks)

Module I

12. Explain the classification of signals with suitable examples.

(or)

(a) What is a Linear Time Invariant System? Explain.
 (b) A particular LTI system has h(t) = e^{-2t}u(t). Determine its output signal y(t) corresponding to an input signal x(t) = u(t).

Module II

14. State and Prove Parseval's theorem.

(or)

15. If $x(t) = [t^{n-1}/(n-1)!] e^{-at}u(t)$, where a>0, Show that $X(f) = 1/(a+j\omega)^n$.

Module III

16. Find the circular convolution of the two causal sequences $\{x(n)\} = \{1,2,3,4\}$ and $y(n) = \{4,3,2,1\}$ by using DFT and IDFT.

OI

17. Using Laplace Transform method, solve the following differential equation for the initial conditions

$$(d^{2}x(t)/dt^{2}) + (5dx(t)/dt) + 6x(t) = \delta(t) + 6u(t)$$
with $x(0^{-}) = 1$ and $x'(0^{-}) = 2$.

Module IV

18. Find the unilateral Z-transform of $x(n) = [a^n \cos \omega_0 n] u(n)$.

O

19. For the Discrete time system described by the following difference equation, determine

(i)	the unit sample response sequence h(n)	(3)
(ii)	the step response sequence g(n) and	(3)
(iii)	whether it is BIBO stable	(2)

12. Explain the classification of signals with suitable 2 amples.

y(n) = 0.6 y(n-1) - 0.08 y(n-2) + x(n)