C	Thomas .	5	9	3	4
	-	U	9	U	10

(Pages: 2)

Name	********	

Reg. No.....

EIGHTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION MAY 2011

AI 04 801—COMPUTER AIDED PROCESS CONTROL

Time: Three Hours Maximum: 100 Marks

Answer all questions.

- 1. (a) Discuss the role of DAC in a data acquisition system.
 - (b) What is a transducer? How is it classified?
 - (c) Explain the ladder programming of PLC.
 - (d) Explain the advantages of PLC.
 - (e) Explain the PROFIBUS system in DCSs.
 - (f) Write a note on HART protocol.
 - (g) Describe two defuzzification methods in fuzzy controllers.
 - (h) What is AI? How is it applied in control system?

 $(8 \times 5 = 40 \text{ marks})$

2. (a) Explain a scheme for storing the output of a transducer into a computer memory.

(9 marks)

(b) Describe the roles of data loggers and announciators.

(6 marks)

Or

(c) What is supervisory control? Illustrate a typical application.

(9 marks)

(d) Explain the features of RTOS used in data acquisition systems.

(6 marks)

3. (a) Explain the application of PLC in implementing a PID controller.

(9 marks)

(b) What is micro PLC?

(6 marks)

Or

(c) How interlocks and alarms are designed in PLCs?

(8 marks)

(d) Explain the analog interfacing of a typical PLC.

(7 marks)

Turn over

		2	C 15934
4.	(a)	With block diagram, explain the principle of a typical DCS.	(9 marks)
	(b)	Explain the integration of DCS with PLC.	(6 marks)
		M Or YAM	
	(c)	Describe DCS software configurations in detail.	(7 marks)
dyn	(d)	Describe a typical plant control using DCS.	(8 marks)
5.	(a)	Write a note on model identification. Explain one approach in detail.	(8 marks)
	(b)	Discuss the principle of adaptive control. Mention typical applications.	(7 marks)
		Or dissaint at wolf frequency a si tadW	(0)
	(c)	What are expert systems? How they are applied for control schemes?	(9 marks)
	(d)	Describe the structure of a feed forward neural network.	(6 marks)
		azod er meteva zugitiong act (4 × 15 =	60 marks)
		Write a note on HART protocol.	(1),
· · · ·		Describe two defuzzification methods in fuzzy controllers.	(3)
		What is Al? How is it applied in control system?	(d)
dre		= 5 × 8)	