Reg. No.....

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, MAY 2011

EN 09 102/PTEN 09—ENGINEERING MATHEMATICS—II

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1. Solve $(D^4 2D^3 + D^2)_y = 0$.
- 2. If $L^{-1}\left\{\frac{s}{\left(s^2+1\right)^2}\right\} = \frac{t}{2}\sin t$, find $L^{-1}\left\{\frac{s}{\left(s^2+\alpha^2\right)^2}\right\}$.
- 3. Find ϕ , if grad $\phi = (y^2 2xyz^3)\hat{i} + (3 + 2xy x^2z^3)\hat{j} + (6z^3 3x^2yz^2)\hat{k}$.
- 4. Find the equation of the tangent plane to the surface $2xz^2 3xy 4x = 7$ at the point (1, -1, 2).
- 5. State Green's theorem.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 6. Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is the parameter.
- 7. Solve $(x^2 + y^2 a^2)xdx + (x^2 y^2 b^2)ydy = 0$.
- 8. Find using convolution theorem to the inverse Laplace transforms of $\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}$.
- 9. Find div \vec{F} and curl \vec{F} , where $\vec{F} = \text{grad}\left(x^3 + y^3 + z^3 3xyz\right)$.
- 10. Find the area of a circle of a radius a using Green's theorem.

11. Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$, where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 1$ that lies in the first Octant.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer Section (a) or (b) of each question. Each question carries 10 marks.

12. (a) Solve $(D^2 + a^2)_y = \sec ax$.

Or

- (b) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + a^2y = \sec ax$.
- 13. (a) Find the inverse Laplace transform of $\tan^{-1}\left(\frac{2}{s^2}\right)$.

Or

- (b) Find the Laplace transform of L $\left\{ \frac{e^{at} \cos bt}{t} \right\}$.
- 14. (a) If $r = |\vec{r}|$, where \vec{r} is the position vector of the point (x, y, z) with respect of the origin, prove that $\nabla f(r) = \frac{f'(r)}{r} \vec{r}$.

Or

- (b) Find the constants a, b, c, so that $\overline{F} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$ may be irrotational.
- 15. (a) Use divergence theorem to evaluate $\iint_{S} \left(yz^{2}\hat{i} + 2x^{2}\hat{j} + 2z^{2}\hat{k}\right) \cdot d\overline{S}$, where \overline{S} is the closed surface bounded by the xoy-plane and the upper half of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ above this plane.
 - (b) If S is any closed surface enclosing a volume V and if $\bar{A} = ax\hat{i} + by\hat{j} + cz\hat{k}$ prove that $\iint_{S} \bar{A} \cdot d\bar{S} = (a+b+c) \text{ V}.$

 $(4 \times 10 = 40 \text{ marks})$