

COMBINED FIRST AND SECOND SEMESTER B.TECH. DEGREE EXAMINATION, MAY 2011

EN 04 101—ENGINEERING MATHEMATICS—

(2004 admissions)

Time: Three Hours

(eduam 8)

(Timarks)

Maximum: 100 Marks

Answer all questions.

Part A

- I. (a) Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x}$
- (b) If $u = \log(x^2 + y^3 + z^3 3xyz)$ prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$.
 - (c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n^3 + 2}{2^n + 2} \right)$.
 - (d) Expand $\cos x$ in powers of $x \frac{\pi}{4}$ upto 4 terms.
 - (e) Prove that the eigen values of a unitary matrix are of magnitude unity.
 - (f) Show that the equations x+2y-z=3, 3x-y+2z=1, 2x-2y+3z=2, x-y+z=-1 are consistent.
 - (g) Express x in Fourier series of period 2π , with $-\pi < x < \pi$.
 - (h) Obtain the Fourier series expansion of $f(x) = x^2 2$ in -2 < x < 2.

 $(8 \times 5 = 40 \text{ marks})$

Part B alon for the function $f(x) = x^2$, $-x < x < \pi$. Hence show that

II. (a) (i) Prove that the evolute of the tractrix $x = a (\cos t + \log \tan \frac{t}{2})$, $y = a \sin t$ is the catenary $y = a \cosh (x/a)$.

(8 marks)

(ii) In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ show that the radius of curvature at the end of the major axis is equal to the semi latus rectum.

(7 marks)

(b) (i) The period T of a simple pendulum of length l is given by $T = 2\pi \sqrt{\frac{l}{g}}$. Find (i) the error and (ii) percentage error made in computing T by using l = 2ft and g = 32 ft/sec.², if the true values are l = 1.95 ft. and g = 32.2 ft/sec.²

(8 marks)

(ii) Find the minimum value of $x^2 + y^2 + z^2$ when x + y + z = 3a.

(7 marks)

III. (a) (i) Discuss the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots$ (8 marks)

(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{4.7.\cdots(3n+1)}{n!} x^n \right).$ (7 marks)

Or

(b) (i) If
$$y = \left(\sinh^{-1} x\right)^2$$
 show that $\left(1 + x^2\right)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$. (8 marks)

(ii) Test the convergence $\sum_{n=1}^{\infty} \left((-1)^2 \frac{1+n^2}{1+n^3} \right). \tag{7 marks}$

IV. (a) (i) Using Cayley-Hamilton theorem find
$$A^{-1}$$
 for $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$. (8 marks)

(ii) Find
$$\lambda$$
 so that $\lambda \left(x^2 + y^2 + z^2\right) + 2xy - 2yz + 2zx$. (7 marks)

(g) Express x in Fourier series of period 2 70 with an

(b) Reduce the quadratic form $3x^2 - 2y^2 - z^2 + 12yz + 8zx - 4xy$ into canonical form by orthogonal reduction. Also identify the nature of the quadratic form.

(15 marks)

V. (a) (i) Obtain the Fourier series expansion for the function $f(x) = x^2$, $-\pi < x < \pi$. Hence show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

(8 marks)

(ii) Expand the function f(x) defined by $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$ in Fourier series.

(7 marks)

(b) (i) The following values of y gives the displacement (in cm) of a certain machine part for the rotation x of the flywheel. Express y in the form of a Fourier series upon first harmonic:

$$x : 0 \quad \frac{\pi}{6} \quad \frac{2\pi}{6} \quad \frac{3\pi}{6} \quad \frac{4\pi}{6} \quad \frac{5\pi}{6}$$

 $y : 0 \quad 9.2 \quad 14.4 \quad 17.8 \quad 17.3 \quad 11.7$

(8 marks)

(ii) Find the half range sine series for $f(x) = \cos x$, $0 < x < \pi$.

(7 marks)

 $[4 \times 15 = 60 \text{ marks}]$