0	0	0	0	0
C	O	4	O	0

(Pages : 2)

Name.....

Reg. No.....

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, MAY 2010

PTEN/EN 09 101—ENGINEERING MATHEMATICS—I

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Give the formula for curvature of any given curve in Cartesian form.
- 2. What is D'Alembert's ratio test?
- 3. State Cayley-Hamilton Theorem.
- 4. Find the eigenvalues of $2A^2$, if $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$.
- 5. Express f(x) = x as a Fourier series in the interval $-\pi < x < \pi$.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Discuss the convergence of $\frac{5}{2} \frac{7}{4} + \frac{9}{6} \frac{11}{8} + \dots$
- 7. Find the centre of curvature of the parabola $y^2 = 12x$ at the point (3, 6).
- 8. Find the equation of the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.
- 9. Find the eigenvalues of adjacent matrix A, given

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$$

- 10. Show that a constant "C" can be expanded in a infinite series $\frac{4c}{\pi} \left\{ \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right\}$ in the range $0 < x < \pi$.
- 11. Develop f(x) in Fourier series in the interval (-2, 2) if

$$f(x) = 0, -2 < x < 0$$

= 1, 0 < x < 2.

 $(4 \times 5 = 20 \text{ marks})$

Turn over

Part C

Answer section (a) or section (b) of each question.

Each question carries 10 marks.

12. (a) Find the equivalent of

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
 in polar co-ordinates.

Or

(b) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \times \frac{\partial(r,\theta)}{\partial(x,y)} = 1$.

13. (a) Test whether the series

$$1 + \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \frac{1}{7^2} - \dots$$
 is convergent or not?

Or .

(b) State the values of x for which the following series converge

$$\frac{1}{1-x} + \frac{1}{2(1-x)^2} + \frac{1}{3(1-x)^3} + \ldots + \infty.$$

14. (a) Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 - 2x_1 x_3 - 4x_2 x_3$ to canonical form by an orthogonal transformation.

Or

(b) Diagonalise the matrix A =

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$$

by means of an orthogonal transformation.

15. (a) Obtain Fourier series for the function f(x) given by

$$f(x) = 1 + \frac{2x}{\pi}, = -\pi \le x \le 0$$

$$= 1 - \frac{2x}{\pi}, \qquad 0 \le x \le \pi$$

Or

(b) Expand $f(x) = e^{-x}$ as a Fourier series in the interval (-l, l).

 $(4 \times 10 = 40 \text{ marks})$

0>2>8-8=(x)A