C 5801

Name.....

Reg. No.....

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2010

EN 2K 102-MATHEMATICS-II

(Common to all Branches)

Time: Three Hours

Maximum: 100 Marks

Answer all the questions.

- 1. (a) Solve (7x 3y 7) dx = (3x 7y 3) dy.
 - (b) Solve $(D^2 + 1) y = x \cosh x$.
 - (c) Show that $\int_{0}^{1} y^{p-1} \left(\log \frac{1}{y} \right)^{q-1} dy = \frac{\Gamma(q)}{p^{q}} \text{ where } p > 0, \ q > 0.$
 - (d) Find the Laplace transform of $te^{3t} \sin 5t$.
 - (e) If \bar{r} is the position vector of the point P (x, y, z), prove that $\nabla r^n = nr^{n-2}\bar{r}$ where $r = |\bar{r}|$.
 - (f) If $\overline{F} = 3xyz^2i + 2xy^3j x^2yzk$ and $\phi = 3x^2 yz$ find $F \cdot \nabla \phi$.
 - (g) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$.
 - (h) Evaluate $\int \mathbf{F} \cdot d\mathbf{r}$ when $\mathbf{F} = x^2 i + y^2 j$ along $y = x^2$ in the xy plane from (0, 0) to (1, 1).

 $(8 \times 5 = 40 \text{ marks})$

2. (a) (i) Solve $\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$. (7 marks)

(ii) Solve Cauchy's equation
$$x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$$
. (8 marks)

Or

(b) (i) Solve
$$(D^2 + 2D + 5) y = e^x \sin 2x$$
. (7 marks)

(ii) Solve
$$(D^2 + 25)$$
 $y = \tan 5x$ by the method of variation of parameters. (8 marks)

3. (a) (i) Using Gamma integral find the value of $\int_{0}^{\infty} x^{7/2} e^{-x^2} dx$. (7 marks)

(ii) Find
$$L\left[\frac{1-\cos t}{t}\right]$$
 and $L\left[t^2e^{2t}\cos 2t\right]$.

(b) (i) Find the inverse Laplace transform of
$$\frac{s^2}{\left(s^2+w^2\right)^2}$$
. (7 marks)

(ii) Find the Laplace transform of the periodic function:

$$f(t) = \begin{cases} t & 0 < t < a \\ 2a - t & a < t < 2a \end{cases} \text{ and } f(t + 2a) = f(t).$$

(8 marks)

- 4. (a) (i) Find the directional derivative of $x^2 + y^2 + 4xyz$ at (1, -2, 2) in the direction of 2i + 2j k. (7 marks)
 - (ii) Show that $\overline{F} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational. Find ϕ such that $\overline{\mathbf{F}} = \nabla \phi$.

(8 marks)

- (b) (i) Find curl curl \overline{F} at (1, 2, -3) for $\overline{F} = x^2i + y^2j + z^2k$. (7 marks)
 - Prove that curl (grad ϕ) = 0 and div (curl \overline{F}) = 0. (8 marks)
- 5. (a) (i) Evaluate $\iiint xyz \ dx \ dy \ dz$ over the positive Octant of the sphere $x^2 + y^2 + z^2 = a^2$.

(7 marks)

(ii) Verify Green's theorem in the plane for $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the boundary of the region defined by x = 0 y = 0 x + y = 1.

(8 marks)

Or - x1 - 2 - x - x -

(b) (i) Verify divergence theorem for $\overline{F} = 4xzi - y^2j + yzk$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

(7 marks)

Evaluate by Stoke's theorem $\oint (\sin z \, dx - \cos x \, dy + \sin y \, dz)$ where C is the boundary of the rectangle $0 \le x \le \pi$, $0, \le y \le 1$ and z = 3.

(8 marks) $[4 \times 15 = 60 \text{ marks}]$