SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2010

AI 04 703—DIGITAL MOS CIRCUITS

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Name.

Part A

Answer all questions.

- 1. (a) Explain about subthreshold current.
 - (b) Write notes on constant field scaling of MOSFET.
 - (c) Explain about pseudo NMOS logic.
 - (d) Explain about the estimation of interconnect parasitics.
 - (e) Write notes on Transmission gate and pass transistor logic.
 - (f) Write notes on BiCMOS switching transients.
 - (g) Realise $f = \overline{A + B}$ using domino logic.
 - h) Write notes on NORA logic.

 $(8 \times 5 = 40 \text{ marks})$

Part B

- 2. (a) Write notes on:
 - (i) Channel length modulation.
 - (ii) Hot electron effects.
 - (iii) Digital MOSFET model.

Or

- (b) Write notes on:
 - (i) Drain induced barrier lowering.
 - (ii) Constant voltage scaling of MOSFET.
- 3. (a) (i) Explain the working of CMOS inverter.
 - (ii) Calculate the delay times of CMOS inverter.

Or

- (b) (i) Design and explain the working of super butter.
 - (ii) Write notes of CMOS ring oscillator.
- 4. (a) Design and explain the working of SR and JK latches using CMOS logic.

PRINCIPAL OF A SOLVENIA

- (b) (i) Explain the working of BiCMOS inverter.
 - (ii) Explain the working of a two input BiCMOS NAND gate.
- 5. (a) Explain on:
 - (i) NOR A logic.
 - (ii) Precharge/evaluate logic.

(d) Write notes on constant field scaling O MOSPET

- (b) (i) Explain about adiabatic logic.
 - (ii) Explain about true single phase clock dynamic logic.

 $(4 \times 15 = 60 \text{ marks})$

(a) (i) Explain the working of CMOS invertee