(Pages: 3)

Name... Reg. N

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE/E DECEMBER 2010

EC 2K 601—CONTROL SYSTEMS

Time: Three Hours

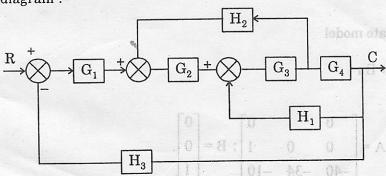
Answer all questions.

Part A

- 1. (a) Draw the canonical form of closed loop control system and write its transfer function.
 - (b) Find the output of the block diagram given:

$$X(s)$$
 G_1 G_2 $Y(s)$ $Y(s)$ $Y(s)$ $Y(s)$

- (c) What are the effects of adding a open loop pole to the root locus and system.
- (d) Draw the circuit diagram for the lead compensation network.
- (e) Comment on mapping between s-plane and z-plane.
- (f) State BIBO Stability Criterion.
- (g) Explain Diagonalisation.
- (h) Discuss the state space representation of discrete time systems. Show end at and W (i) (a)


emergraving to neighbor to sentragond only one $(8 \times 5 = 40 \text{ marks})$

2. (a) Determine the time response specifications and expression for output of unit step input to a system having the system equation as follows:

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 16y = 9x$$

Assume zero initial conditions.

(b) Explain the rules for block diagram reduction and hence find the transfer function for the (astram of following diagram :-

(15 marks)

Turn over

- 3. (a) Construct bode plot for the system whose Open loop transfer function is given below and determine.
 - (i) the gain margin.
 - (ii) the phase margin.

G (s) H (s) =
$$\frac{4}{s(1+0.5s)(1+0.08s)}$$
.

(15 marks)

(b) Draw the Nyquist plot for the open loop transfer function given below and comment on the closed loop stability.

G (s) H (s) =
$$\frac{2.2}{s(s+1)(s^2+2s+s)}$$
.

moitsatis magniti marks)

4. (a) (i) What is the condition for z-transform to exist? (5 marks)

(ii) What are the properties of region of convergence?

(5 marks)

(iii) Find the DFT of the sequence $x(n) = \{1, 1, 0, 0\}$. (5 marks)

(b) A unity feedback system oscillates with a frequency of w = 2 rad / sec. The open loop transfer

function is given by $G(s) = \frac{k(s+1)}{s^3 + O(s^2 + 2s + 1)}$. The system has poles at 1jw and no poles on

right half of s-plane. Use Routh Hurwitz criterion to find the value of 'a' and 'k'.

(15 marks)

5. (a) Consider a state model

$$X = AX + Bu$$

where
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -40 & -34 & -10 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

- (i) Show that the eigen values of A are $-3 \pm j1$, -4.
- (ii) Suggest a suitable transformation matrix m so that:

$$M^{-1} AM = A \begin{bmatrix} -3 + j1 & 0 & 0 \\ 0 & -3 + j1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

(15 marks)

01

(b) A discrete-time system has the transfer function:

$$T(z) = \frac{4z^3 - 12z^2 + 13z - 7}{(z-1)^2(z-2)}.$$

Determine the state model of the system in:

- (i) phase variable form.
- (ii) Jordan canonical form.

(15 marks)

 $(4 \times 15 = 60 \text{ marks})$