

SEVENTH SEMESTER B.TECH. (ENGINEERING) DE EXAMINATION, JUNE 2010

EE 04 705 B—NUMERICAL ANALYSIS AND OPTIMIZATION TECHNI

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

I. (a) Obtain a root of the following equations correct to three decimal places using the bisection method:

$$x^3-x-1=0.$$

(b) Using Crout's method solve the following equation:

$$x + y + z = 3$$

$$2x - y + 3z = 16$$

$$3x + y - z = -3$$

- (c) Apply Simpson's rule to evaluate $\int_0^2 \frac{dx}{1+x^3}$ to two decimal places, by dividing the range into 4 equal parts.
- (d) Solve numerically using Taylor series approach:

$$\frac{dx}{dt} = t^3 + x$$
 for $t = 1.1, 1.2, 1.3, 1.4, 1.5$.

The initial conditions are t = 1, x = 1.

(e) Use simplex method to maximise:

$$Z = 2x_1 - x_2 + x_3$$

subject to the constraints

$$3x_1 + x_2 + x_3 \le 60$$

$$x_1 - x_2 + 2x_3 \le 10$$

$$x_1 + x_2 - x_3 \le 20$$
 and

$$x_1, x_2, x_3 \geq 0.$$

(f) Use dual simplex method to solve the following:

$$Minimize z = x_1 + x_2$$

subject to the constraints

$$2x_2 + x_2 \ge 4$$

$$x_1 + 7x_2 \ge 7$$

$$x_1, x_2 \ge 0.$$

(g) Solve the following transportation problem:

	Destination				
Source	1	2	3	4	Available
1	21	16	25	13	11
2	17	18	14	23	13
3	32	27	18	41	19
Requirement	6	10	12	15	43

(h) Solve the following assignment problems:-

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Obtain a root of the following equations correct to three decimal places, using bisection method:—

(i)
$$x^3 - x^2 + x - 7 = 0$$
.

(ii)
$$x^3 - 9x + 1 = 0$$
.

Or

(b) Use the method of iteration to solve the equations:

(i)
$$x^3 + x^2 - 1 = 0$$
.

(ii)
$$x^3 - 2x^2 - 4 = 0$$
.

III. (a) (i) Use the Trapezoidal rule evaluate $\int_{0.6}^{2} y dx$ from the following table:

 $x : 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2.0$

 $y : 1.23 \ 1.58 \ 2.03 \ 4.32 \ 6.25 \ 8.36 \ 10.23 \ 12.45$

Or

- (b) (i) Find an approximate value of $\log_e 5$ by calculating to 4 decimal places by Simpson's rule the integral $\int_0^5 \frac{dx}{4x+5}$ dividing the range into 10 equal parts.
 - (ii) Using Simpson's rule, evaluate $\int\limits_0^\pi \sin^3 x \ dx$ from the following data :— $x : 0 \quad \pi/4 \quad \pi/2 \quad 3\pi/4 \quad \pi$

 $\sin x$: 0 0.7071 1.000 0.7071 0

- IV (a) Use simplex method to solve the linear programming problem:
 - (i) Maximize $Z = 3x_1 + 2x_2$

subject to the constraints:

1
$$x_1 + x_2 \le 4$$
, $x_1 - x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

2
$$x_1 + x_2 \le 6$$
, $2x_1 + x_2 \le 6$, $x_1, x_2 \ge 0$.

(ii) Maximize $Z = 2x_1 + 3x_2$

subject to constraints:

$$x_1 + x_2 \le 4$$
, $-x_1 + x_2 \le 1$ and $x_1 + 2x_2 \le 5$, $x_1 \ge 0$, $x_2 \ge 0$.

O1

- (b) Use dual simplex method to solve the following:-
 - (i) Minimize $Z = x_1 + \bar{x}_2$

subject to the constraints:

$$2x_1 + x_2 \ge 4$$
, $x_1 + 7x_2 \ge 7$, $x_1, x_2 \ge 0$.

(ii) Maximize $Z = -2x_1 - x_2$

subject to the constraints:

$$3x_1 + x_2 \ge 3, 4x_1 + 3x_2 \ge 6, x_1 + 2x_2 \ge 3, x_1, x_2 \ge 0.$$

Turn over

V. (a) Solve the following transportation problem:—

		To		
From	A	В	C	Available
I	6	8	4	14
П	4	9	8	12
Ш	1	2	6	5
Demand	6	10	15	

Or

(b) Solve the following assignment problem:—

 $(4 \times 15 = 60 \text{ marks})$